Learn how easy it is to apply sophisticated statistical and machine learning methods to real-world problems when you build on top of the Google Cloud Platform (GCP). This hands-on guide shows developers entering the data science field how to implement an end-to-end data pipeline, using statistical and machine learning methods and tools on GCP. Through the course of the book, youíll work through a sample business decision by employing a variety of data science approaches.
Follow along by implementing these statistical and machine learning solutions in your own project on GCP and discover how this platform provides a transformative and more collaborative way of doing data science.
Youíll learn how to:
Automate and schedule data ingest, using an App Engine application
Create and populate a dashboard in Google Data Studio
Build a real-time analysis pipeline to carry out streaming analytics
Conduct interactive data exploration with Google BigQuery
Create a Bayesian model on a Cloud Dataproc cluster
Build a logistic regression machine-learning model with Spark
Compute time-aggregate features with a Cloud Dataflow pipeline
Create a high-performing prediction model with TensorFlow
Use your deployed model as a microservice you can access from both batch and real-time pipelines
Reviews
There are no reviews yet.